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Abstract  

Background 

Bacillus subtilis is an organism of interest because of its extensive industrial 

applications, its similarity to pathogenic organisms, and its role as the model organism 

for Gram positive, sporulating bacteria. In this work, we introduce a new genome-

scale metabolic model of B. subtilis 168 called iBsu1101. This new model is based on 

the annotated B. subtilis 168 genome generated by the SEED, one of the most up-to-

date and accurate annotations of B. subtilis 168 available. 

Results 

 The iBsu1101 model includes 1,444 reactions associated with 1,101 genes, 

making it the most complete model of B. subtilis available. The model also includes 

Gibbs free energy change (∆rG’°) values for 1,383 (96%) of the model reactions 

estimated by using the group contribution method. This data was used with a novel 

reaction reversibility prediction method to identify 650 (45%) irreversible reactions in 

the model. The model was validated against an experimental dataset consisting of 

1,500 distinct conditions and was optimized by using a novel method to improve 

model accuracy from 89.5% to 93.6%. 

Conclusions 

 Basing the iBsu1101 model on the annotations generated by the SEED 

significantly improved the model completeness and accuracy compared with the 

previous model published by Oh et al. The enhanced accuracy of the iBsu1101 model 

also demonstrates the efficacy of our reaction directionality prediction method in 

accurately identifying irreversible reactions in the B. subtilis metabolism. The model 
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optimization methodology was demonstrated to be effective in minimally adjusting 

model content to improve model accuracy. 

Background  

Bacillus subtilis is a naturally competent, Gram positive, sporulating 

bacterium often used in industry as a producer of high-quality enzymes and proteins 

[1]. As the most thoroughly studied of Gram positive and sporulating bacteria, B. 

subtilis serves as a model cell for understanding the Gram positive cell wall and the 

process of sporulation. With its similarity to the pathogens Bacillus anthracis and 

Staphylococcus aureus, B. subtilis is also important as a platform for exploring novel 

medical treatments for these pathogens. Moreover, the natural competence of B. 

subtilis opens the way for simple and rapid genetic modification by homologous 

recombination [2].  

For all these reasons, B. subtilis has been the subject of extensive experimental 

study. Every gene essential for growth on rich media is known [3]; 60 gene intervals 

covering 49% of the genes in the genome have been knocked out and the resulting 

phenotypes analyzed [4]; 13C experiments have been run to explore the cell response 

to mutations in the central carbon pathways [5]; and biolog phenotyping experiments 

have been performed to study the ability of B. subtilis to metabolize 271 different 

nutrient compounds [6].  

As genome-scale experimental datasets begin to emerge for B. subtilis, 

genome-scale models of B. subtilis are required for the analysis and interpretation of 

these datasets. Genome-scale metabolic models may be used to rapidly and accurately 

predict the cellular response to gene knockout [7, 8], media conditions [9], and 

environmental changes [10]. Recently, genome-scale models of the metabolism and 
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regulation of B. subtilis have been published by Oh et al. [6] and Goelzer et al. [11] 

respectively. However, both of these models have drawbacks and limitations. While 

the Goelzer et al. model provides regulatory constraints for B. subtilis on a large scale, 

the metabolic portion of this model is limited to the central metabolic pathways of B. 

subtilis. As a result, this model captures fewer of the metabolic genes in B. subtilis, 

thereby restricting the ability of the model to predict the outcome of large-scale 

genetic modifications. While the Oh et al. metabolic model covers a larger portion of 

the metabolic pathways and genes in B. subtilis, many of the annotations that this 

model is based upon are out of date. Additionally, both models lack thermodynamic 

data for the reactions included in the models. Without this data, the directionality and 

reversibility of the reactions reported in these models is based entirely on databases of 

biochemistry such as the KEGG [12, 13]. Hence, directionality is often 

overconstrained, with a large number of reactions listed as irreversible (59% of the 

reactions in the Goelzer et al. model and 65% of the reactions in the Oh et al. model). 

In this work, we introduce a new genome-scale model of B. subtilis based on 

the annotations generated by the SEED Project [14, 15]. The SEED is an attractive 

source for genome annotations because it provides continuously updated annotations 

with a high level of accuracy, consistency, and completeness. The exceptional 

consistency and completeness of the SEED annotations are primarily a result of the 

subsystems-based strategy employed by the SEED, where each individual cellular 

subsystem (e.g., glycolysis) is annotated and curated across many genomes 

simultaneously. This approach enables annotators to exploit comparative genomics 

approaches to rapidly and accurately propagate biological knowledge. 

During the reconstruction process for the new model, we applied a group 

contribution method [16] to estimate the ∆rG’° for each reaction included in the model. 
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We then developed a novel method that uses these estimated ∆rG’° values along with 

the reaction stoichiometry to predict the reversibility and directionality of every 

reaction in the model. The ∆rG’° values reported for the reactions in the model will 

also be of use in applying numerous forms of thermodynamic analysis now emerging 

[17-19] to study the B. subtilis metabolism on a genome scale. 

Once the reconstruction process was complete, we applied a novel model 

optimization method based on the GrowMatch algorithm developed by Kumar and 

Maranas [20] to fit our model to the available experimental data. In the GrowMatch 

methodology, an optimization problem is solved for each experimental condition that 

is incorrectly predicted by the original model, in order to identify the minimal number 

of reactions that must be added or removed from the model to correct the prediction. 

As a result, many equivalent solutions are generated for correcting each erroneous 

model prediction. We introduce a new solution reconciliation step to the GrowMatch 

procedure to identify the optimal combination of these solutions that results in an 

optimized model. 

Results and Discussion  

Reconstruction of the Core iBsu1101 model 

We started the model reconstruction by obtaining the annotated B. subtilis 168 

genome from the SEED. This annotated genome consists of 2,642 distinct functional 

roles associated with 3,149 (76.5%) of the 4,114 genes identified in the B. subtilis 168 

chromosome. Of the functional roles included in the annotation, 51% are organized 

into SEED subsystems, each of which represents a single biological pathway such as 

histidine biosynthesis. The functional roles within subsystems are the focus of the 

cross-genome curation efforts performed by the SEED annotators, resulting in greater 
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accuracy and consistency in the assignment of these functional roles to genes. 

Reactions were mapped to the functional roles in the B. subtilis 168 genome based on 

three criteria: (i) match of the EC numbers associated with the reaction and the 

functional role, (ii) match of the metabolic activities associated with the reaction and 

the functional role, and (iii) match of the substrates and products associated with the 

reaction and functional role [21]. In total, 1,267 distinct reactions were associated 

with 1,032 functional roles and 1,102 genes. Of these reactions, 88% were assigned to 

functional roles included in the highly curated SEED subsystems, giving us a high 

level of confidence in the annotations that form the basis of the B. subtilis model. 

Often genes produce protein products that function cooperatively as a 

multienzyme complex to perform a single reaction. To accurately capture the 

dependency of such reactions on all the genes encoding components of the 

multienzyme complex, we grouped these genes together before mapping them to the 

reaction. We identified 111 such gene groups and mapped them to 199 distinct 

reactions in the B. subtilis model. Reactions were mapped to these gene groups 

instead of individual genes if (i) the functional roles assigned to the genes indicated 

that they formed a complex, (ii) multiple consecutive nonhomologous genes were 

assigned to the same functional role, or (iii) the reaction represented the lumped 

functions of multiple functional roles associated with multiple genes. 

The metabolism of B. subtilis is known to involve some metabolic functions 

that are not associated with any genes in the B. subtilis genome. During the 

reconstruction of the B. subtilis model, 71 such reactions were identified. While 20 of 

these reactions take place spontaneously, the genes associated with the remaining 

reactions are unknown. These reactions were added to the model as open problem 
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reactions, indicating that the genes associated with these reactions have yet to be 

identified (Supplementary Table S3). 

Data from Biolog phenotyping arrays was also used in reconstructing the B. 

subtilis model. The ability of B. subtilis to metabolize 153 carbon sources, 53 nitrogen 

sources, 47 phosphate sources, and 18 sulfate sources was tested by using Biolog 

phenotyping arrays [6]. Of the tested nutrients, B. subtilis was observed to be capable 

of metabolizing 95 carbon, 42 nitrogen, 45 phosphate, and 2 sulfur sources. Transport 

reactions are associated with genes in the B. subtilis 168 genome for only 94 (51%) of 

these proven nutrients. Therefore, 73 open problem transport reactions were added to 

the model to allow for transport of the remaining Biolog nutrients that exist in our 

biochemistry database (Supplementary Table S3). 

In total, the unoptimized SEED-based B. subtilis model consists of 1,411 

reactions and 1,102 genes. We call this model the Core iBsu1101, where the i stands 

for in silico, the Bsu stands for B. subtilis, and the 1101 stands for the number of 

genes captured by the model (one gene is lost during the model optimization process 

described later). In keeping with the modeling practices first proposed by Reed et al. 

[22], protons are properly balanced in the model by representing all model 

compounds and reactions in their charge-balanced and mass-balanced form in 

aqueous solution at neutral pH (determined using 

http://www.chemaxon.com/marvin/index.html). 

Table 1 - Model content overview  

Model  Core iBsu1101 Optimized iBsu1101 Oh et al. model  
Number of genes  1102 (26.8%) 1101 (26.8%) 844 
Total reactions  1411 1444 1020 
Reactions associated with genes  1267 (89.7%) 1264 (87.5%) 904 (88.6%) 
Spontaneous reactions  20 (1.4%) 20 (1.4%) 2 (0.2%) 
Open problem reactions  125 (8.9%) 160 (11.1%) 114 (11.2%) 
Total compounds 1146 1147 988 
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Construction of a biomass objective function 

 In order to use the reconstructed iBsu1101 model to predict cellular response 

to media conditions and gene knockout, a biomass objective function (BOF) was 

constructed. This BOF was based primarily on the BOF developed for the Oh et al. 

genome-scale model of B. subtilis [6]. The 61 small molecules that make up the Oh et 

al. BOF can be divided into seven categories representing the fundamental building 

blocks of biomass: DNA, RNA, lipids, lipoteichoic acid, cell wall, protein, and 

cofactors and ions. In the Oh et al. BOF, all of these components are lumped together 

as reactants in a single biomass synthesis reaction, which is not associated with any 

genes involved in macromolecule biosynthesis. In the iBsu1101 model, we 

decomposed biomass production into seven synthesis reactions: (i) DNA synthesis, 

(ii) RNA synthesis, (iii) protein synthesis, (iv) lipid content, (v) lipoteichoic acid 

synthesis, (vi) cell wall synthesis, and (vii) biomass synthesis. These abstract species 

produced by these seven synthesis reactions are subsequently consumed as reactants 

along with 22 cofactors and ionic species in the biomass synthesis reaction. This 

process reduces the complexity of the biomass synthesis reaction and makes the 

reason for the inclusion of each species in the reaction more transparent. Additionally, 

this allows the macromolecule synthesis reactions to be mapped to macromolecule 

biosynthesis genes in B. subtilis. For example, genes responsible for encoding 

components of the ribosome and genes responsible for tRNA loading reactions were 

all assigned together as a complex associated with the protein synthesis reaction. 

 Some of the species acting as biomass precursor compounds in the Oh et al. 

BOF were also altered in the adaptation of the BOF to the iBsu1101 model. In the Oh 

et al. model, the BOF involves 11 lumped lipid and teichoic acid species, which 

represent the averaged combination of numerous lipid compounds with varying 
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carbon chain lengths. In the development of the fatty acid and cell wall biosynthesis 

pathways for the iBsu1101 model, we represented every distinct fatty acid and 

teichoic acid species explicitly rather than using lumped reactions and compounds. As 

a result, lumped species that serve as biomass components in the Oh et al. model were 

replaced by 99 explicit species in the iBsu1101 BOF. Of these species, 63 serve as 

reactants in the lipid content reaction, while the remaining species serve as reactants 

in the teichoic acid synthesis reaction. 

 Two new biomass precursor compounds were added to the biomass synthesis 

reaction of the iBsu1101 model to improve the accuracy of the gene essentiality 

predictions: coenzyme A and acyl-carrier-protein. Both of these species are used 

extensively as carrier compounds in the metabolism of B. subtilis, making the 

continuous production of these compounds essential. The biosynthesis pathways for 

both compounds already existed in the iBsu1101, and two of the steps in these 

pathways are associated with essential genes in B. subtilis: ytaG (peg.2909) and acpS 

(peg.462). If these species are not included in the BOF, these pathways become non-

functional, and the essential genes associated with these pathways are incorrectly 

predicted to be nonessential. 

 The coefficients in the Oh et al. BOF are derived from numerous analyses of 

the chemical content of B. subtilis biomass [23-27]. We similarly derived the 

coefficients for the iBsu1101 model from these sources. While no data was available 

on the percentage of B. subtilis biomass represented by our two additional biomass 

components coenzyme A and ACP, we assume these components to be 0.5% of the 

net mass of cofactors and ions represented in the BOF. 
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Results of automated assignment of reaction reversibility 

 

Figure 1. Distribution of reactions conforming to reversibility rules 

 The group contribution method [16] was used to estimate ∆fG’° for 934 

(81.5%) of the metabolites and ∆rG’° for 1,383 (95.8%) of the reactions in the 

unoptimized iBsu1101 model. Estimated ∆rG’° values were used in combination with 

a set of heuristic rules (see Materials and Methods) to predict the reversibility and 

directionality of each reaction in the model under physiological conditions (Figure 1). 

Based on these reversibility rules, 633 (44.8%) of the reactions in the model were 

found to be irreversible. However, when the directionality of the irreversible reactions 

was set according to our reversibility criteria, the model no longer predicted growth 

on LB or glucose-minimal media. This result indicates that the direction of flux 

required for growth under these media conditions contradicted the predicted 

directionality for some of the irreversible reactions in the model. Six reactions were 

identified in the model that met these criteria (Table 2).  
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Table 2 - Reactions required to violate the automated reversibility rules 

Reaction Name Equation ∆rG’m 
CMP-lyase 2-p-4-CDP-2-m-eryth => CMP + 2-m-eryth-2-4-

cyclodiphosphate 
22.7 kcal/mol 

dihydroneopterin 
aldolase 

dihydroneopterin => glycolaldehyde + 2-Amino-4-hydroxy-
6-hydroxymethyl-7,8-dihydropteridine 

10.7 kcal/mol 

tetrahydrodipicolinate 
acetyltransferase 

H2O + acetyl-CoA + tetrahydrodipicolinate => CoA + L-2-
acetamido-6-oxopimelate 

11.4 kcal/mol 

dihydroorotase H+ + N-carbamoyl-L-aspartate  => H2O + L-dihydroorotate 5.3 kcal/mol 
Phosphoribosyl 
aminoimidazole 
synthase 

ATP + 5'-Phosphoribosylformylglycinamidine => ADP + 
Phosphate + H+ + AIR 

16.6 kcal/mol 

sulfate 
adenylyltransferase

ATP + sulfate + H+ => diphosphate + Adenylyl sulfate 12.6 kcal/mol 

 

In every case, these reactions were made irreversible in the reverse direction because 

the '
minrG∆  of each reaction was greater than zero. However, all of these reactions 

involve uncommon molecular substructures for which little experimental 

thermodynamic data is available [16]. Thus, in combination with the strong 

experimental evidence for the activity of these reactions in the direction shown in the 

Table 2, we assumed that the ∆rG’° values of these reactions were overestimated by 

the group contribution method and that these reactions are in fact reversible. 

Results of the model optimization procedure 

The unoptimized model was validated against a dataset consisting of 1,500 

distinct experimental conditions, including gene essentiality data [3], Biolog 

phenotyping data [6], and gene interval knockout data [4] (Table 3). Initially, 79 

errors arose in the gene essentiality predictions including 49 false positives (an 

essential gene being predicted to be nonessential) and 30 false negatives (a 

nonessential gene being predicted to be essential). The annotations of all erroneously 

predicted essential and nonessential genes were manually reviewed to identify cases 

where the prediction error was a result of an incorrect gene annotation. Of the 

essential genes that were predicted to be nonessential, 23 were mapped to essential 
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metabolic functions in the model. However, these essential genes all had close 

homologs in the B. subtilis genome that were mapped to the same essential metabolic 

functions (Supplementary Table S4). Three explanations exist for the apparent 

inactivity of these gene homologs: (i) they are similar to the essential genes but 

actually perform a different function; (ii) they are nonfunctional homologs; or (iii) the 

regulatory network in the cell deactivates these genes, making them incapable of 

taking over the functions of the essential genes when they are knocked out. In order to 

correct the essentiality predictions in the model, these 23 homologous genes were 

disassociated from the essential metabolic functions. 

Table 3  -  Accuracy of model predictions after curation of annotations  

Data  
Type  

Experimental 
data  

Core iBsu1101 
(correct/total) 

Fit iBsu1101 
(correct/total) 

Oh et al. model  
(correct/total) 

Biolog media with 
nonzero growth  

184 [6] 107/184 (58.2%) 137/184 (74.5%) 122/184 (66.3%) 

Biolog media with zero 
growth  

87 [6] 80/87 (92%) 81/87 (93.1%) 79/87 (90.8%) 

Essential genes in LB 
media 

271 [3] 189/215 (87.9%) 197/215 (91.6%) 63/91 (69.2%) 

Nonessential genes in 
LB media 

3,841 [3] 859/889 (96.6%) 873/888 (98.3%) 657/675 (97.3%) 

Nonessential intervals 
in LB media 

63 [4] 55/63 (87.3%) 58/63 (92.1%) 58/63 (92.1%) 

Nonessential intervals 
in minimal media 

54 [4] 48/54 (88.9%) 49/54 (90.7%) 50/54 (92.6%) 

Essential gene intervals 
in minimal media  

9 [4] 5/9 (55.6%) 5/9 (55.6%) 6/9 (66.7%) 

Overall accuracy 4,452 1,343/1,501 
(89.5%) 

1,404/1,500 
(93.6%) 

1,035/1,163 
(89.0%) 

 

We then applied our novel model optimization procedure (see Materials and 

Methods) in an attempt to fix the 111 remaining false negative predictions and 37 

remaining false positive predictions (Figure 2). First, the gap filling algorithm was 

applied to identify existing irreversible reactions that could be made reversible or new 

reactions that could be added to correct each false negative prediction. This step 

produced 686 solutions correcting 78 of the false negative predictions. The gap filling 
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reconciliation algorithm was used to combine the gap filling solutions into a single 

solution that corrected 39 false negative predictions and introduced five new false 

positive predictions.  Next, the gap generation algorithm was applied to identify 

reactions that could be removed or made irreversible to correct each false positive 

prediction. The gap generation algorithm produced 144 solutions correcting 32 of the 

false positive predictions. The gap generation reconciliation algorithm combined these 

solutions into a single solution that corrected 14 false positive predictions without 

introducing any new false negative predictions. Overall, two irreversible reactions 

were made reversible, 35 new reactions were added to the model, 21 reversible 

reactions were made irreversible, and 3 reactions were removed entirely from the 

model (Supplementary Table S5). As a result of these changes, the model accuracy 

increased from 89.5% to 93.6%. 

 

Initial iBsu1101 model:
•111 false negatives: 30 gene KO/77 biolog/14 interval KO
•37 false positives: 26 gene KO/7 biolog/4 interval KO

Gap generation

Gap filling 686 solutions correcting 
78/111 false negatives

144 solutions correcting 
32/42 false positives

•Make 2 reactions reversible
•Add 35 new reactions

Gap filling 
reconciliation

Gap filled iBsu1101 model:
•72 false negatives: 15 gene KO/47 biolog/10 interval KO
•42 false positives: 26 gene KO/11 biolog/5 interval KO

Gap generation 
reconciliation

•Make 21 reactions irreversible
•Entirely remove 3 reactions

Optimized iBsu1101 model:
•72 false negatives: 15 gene KO/47 biolog/10 interval KO
•28 false positives: 18 gene KO/6 biolog/4 interval KO
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Figure 2. Model optimization procedure results 

Model overview 

 The final optimized version of the iBsu1101 model consists of 1,444 reactions, 

1,147 metabolites, and 1,101 genes. Based on the reversibility rules and the estimated 

thermodynamic data, 650 (45.0%) of the model reactions were determined to be 

irreversible. All data relevant to the model is provided in the supplementary material, 

including metabolite structures, metabolite data (Supplementary Table S1), reaction 

data (Supplementary Table S2), estimated thermodynamic data (Supplementary Table 

S2), model stoichiometry in SBML format, and mappings of model compound and 

reaction IDs to IDs in the KEGG and other genome-scale models (Supplementary 

Tables S1 and S2). 

The reactions included in the optimized model were categorized into ten 

regions of B. subtilis metabolism (Figure 3a and Supplementary Table S2). The 

largest category of model reactions is fatty acid and lipid biosynthesis. This is due to 

the explicit representation of the biosynthesis of every significant lipid species 

observed in B. subtilis biomass as opposed to the lumped reactions used in other 

models. The explicit representation of these pathways has numerous advantages: (i) 

∆fG’° and ∆rG’° may be estimated for every species and reaction; (ii) every species has 

a distinct structure, mass, and formula; and (iii) the stoichiometric coefficients in the 

reactions better reflect the actually biochemistry taking place. The other most 

significantly represented categories of model reactions are carbohydrate metabolism, 

amino acid biosynthesis and metabolism, and membrane transport. These categories 

are expected to be well represented because they represent pathways in the cell that 

deal with a highly diverse set of substrates: 20 amino acids, more than 95 metabolized 

carbon sources, and 244 transportable compounds.  
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Reactions in the model were also categorized according to their behavior 

during growth on LB media (Figure 3b and Supplementary Table S2). Of the model 

reactions, 298 (21%) were essential for minimal growth on LB media. These are the 

reactions fulfilling essential metabolic functions for B. subtilis where no other 

pathways exist, and they form an always-active core of the B. subtilis metabolism. 

Another 703 (49%) of the model reactions were nonessential but capable of carrying 

flux during growth on LB media. While these reactions are not individually essential, 

growth is lost if all of these reactions are simultaneously knocked out. The reason is 

that some of these reactions represent competing pathways for performing an essential 

metabolic function. Another 231 (16%) of the reactions cannot carry flux during 

growth on LB media. These reactions are on the periphery of the B. subtilis 

metabolism involved in the transport and catabolism of metabolites not included in 

our in silico representation of LB media. Moreover, 211 (15%) of the model reactions 

are disconnected from the network, indicating that these reactions either lead up to or 

are exclusively derived from a dead end in the metabolic network. Presence of these 

reactions indicates (i) missannotation or overly generic annotation of the gene 

associated with the reaction, or (ii) a gap in the metabolic network. Thus these 

reactions represent areas of the metabolic chemistry where more experimental study 

and curation of annotations must occur. 
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Figure 3. Classification of model reactions by function and behaviour  

Comparison with previously published models of B. subtilis 

 We performed a detailed comparison of the Oh et al. and iBsu1101 models to 

identify differences in content and elucidate the conflicts in the functional annotation 

of genes. Our comparison encompassed the reactions involved in the models, the 

genes involved in the models, the mappings between genes and reactions in the 

models, and the gene complexes captured by the models (Figure 4).  
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Figure 4. Comparison of iBsu1101 model to Oh et al. model 

Our comparison revealed significant overlap in the content of the two models. Of the 

1,020 total reactions in the Oh et al. model, 818 (80%) were also contained in the 

iBsu1101 model. The remaining 202 Oh et al. reactions were excluded from the 

iBsu1101 model primarily because of a disagreement between the Oh et al. and SEED 

annotations or because they were lumped reactions that were represented in un-

lumped form in the iBsu1101 model (Supplementary Table S6). 

 Significant agreement was also found in the mapping of genes to reactions in 

the Oh et al. and iBsu1101 models. Of the 1,550 distinct gene-reaction mappings that 

involved the 818 reactions found in both models, 1,028 (66%) were identical. 20 Of 

the 346 mappings that were exclusive to the iBsu1101 model, 20 involved reactions 

with no associated gene in the Oh et al. model. The remaining 326 exclusive 

iBsu1101 mappings involved paralogs or gene complexes not captured in the Oh et al. 
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annotation. The 172 mappings exclusive to the Oh et al. model all represent conflicts 

between the functional annotation in the Oh et al. model and the functional annotation 

generated by the SEED (Supplementary Table S7). Although 8 of these Oh et al. 

exclusive mappings involved eight reactions with no associated gene in the iBsu1101 

model, these mappings were rejected because they conflicted with the SEED 

annotation. 

 In addition to containing most of the reaction and annotation content of the Oh 

et al. model, the iBsu1101 model also includes 629 reactions and 340 genes that are 

not in the Oh et al. model (Figure 4 and Supplementary Table S2). The additional 

reactions in the iBsu1101 model take part in a variety of functional categories spread 

throughout the B. subtilis metabolism, although nearly half of these reactions 

participate in the fatty acid and lipid biosynthesis (Figure 4b). These reactions are 

primarily a result of replacement of lumped fatty acid and lipid reactions in the Oh et 

al. model with unlumped reactions in the iBsu1101 model. Of the additional reactions 

in the iBsu1101 model, 179 are associated with the 340 genes that are exclusive to the 

iBsu1101 model. These additional reactions are a direct result of the improved 

coverage of the B. subtilis genome by the SEED functional annotation. The remaining 

450 reactions are a result of differences in the functional annotation between the Oh et 

al. and SEED annotations. 

A comparison of the gene complexes encoded in both model reveals little 

overlap in this portion of the models. Of the 108 distinct gene complexes encoded in 

the iBsu1101 model, only 20 overlapped with the Oh et al. model, whereas the Oh et 

al. model contained only 8 gene complexes not encoded in the iBsu1101 model 

(Figure 3). This indicates a significantly more complete handling of complexes in the 

iBsu1101 model. 
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All of the additional content in the iBsu1101 model translates into a significant 

improvement in the accuracy of the gene knock out predictions, the Biolog media 

growth predictions, and the gene interval knockout predictions (Table 3). Even before 

optimization, the iBsu1101 model is 0.5% more accurate than the Oh et al. model. 

After optimization, the iBsu1101 model is 4.6% more accurate. In addition to the 

improvement in accuracy, the improved coverage of the genome by the iBsu1101 

model also allows for the simulation of 337 additional experimental conditions by the 

model. 

We note that while the annotations used in the iBsu1101 model were derived 

primarily from the SEED, the Oh et al. model proved invaluable in reconstructing the 

iBsu1101 model. The work of Oh et al. was the source of Biolog phenotyping data 

and analysis; and the Oh et al. model itself was a valuable source of reaction 

stoichiometry, metabolite descriptions, and data on biomass composition, all of which 

were used in the reconstruction of the iBsu1101 model. 

Conclusions  

As one of the first genome-scale metabolic models constructed based on an 

annotated genome from the SEED framework, the iBsu1101 model demonstrates the 

exceptional completeness and accuracy of the annotations generated by the SEED. 

The iBsu1101 model covers 257 more genes than the Oh et al. model; it can simulate 

337 more experimental conditions; and it simulates conditions with greater accuracy. 

In fact, of the seven new assignments of functions to genes proposed in the Oh et al. 

work based on manual gene orthology searches, two were already completely 

captured by the SEED annotation for B. subtilis 168 prior to the publication of the Oh 
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et al. manuscript. Another two of these proposed annotations were partially captured 

by the SEED annotation. 

In this work we also demonstrate a method for consistently and automatically 

assigning directionality to the biochemical reactions in genome-scale metabolic 

models. Of the 1,444 reactions assigned directionality using this method, only 29 

(2%) needed to be manually adjusted based on the available experimental data. Unlike 

other proposed methods for assigning directionality [28], no complex network 

analysis was required, simplifying the implementation of this new method. 

Additionally, the thermodynamic data published with this model as a result of the 

thermodynamic analysis performed will be invaluable in the application of this model 

to numerous emerging forms of thermodynamic analysis [17-19].  

The fitting methods presented in this work were also demonstrated to be a 

highly effective means of identifying and correcting potential errors in the metabolic 

network that cause errors in model predictions. This method is driven entirely by the 

available experimental data, requiring manual input only in selecting the best of the 

equivalent solutions generated by the solution reconciliation steps of the method. The 

reconciliation step proposed in this new method also proved to be an effective means 

of identifying the minimal changes to the model required to produce the optimal fit to 

the available experimental data. The reconciliation reduced the 830 distinct solutions 

involving hundreds of different changes to the model to a single solution that 

combined 61 model modifications to fix 48 (32%) of the 148 incorrect model 

predictions new reactions. 

 Overall, we demonstrate the iBsu1101 model to be the most complete and 

accurate model of B. subtilis published to date. The identification and encoding of 

gene complexes, the removal of lumped reactions and compounds, and the 
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refinements of the biomass objective function make this model especially applicable 

to thermodynamic analysis and gene knockout prediction. This model will be an 

invaluable tool in the ongoing efforts to genetically engineer a minimal strain the B. 

subtilis for numerous engineering applications [2, 4].  

Materials and methods  

Validation of the B. subtilis model using flux balance analysis (FBA) 

Flux balance analysis (FBA) was used to simulate all experimental conditions 

to validate the iBsu1101 model. FBA defines the limits on the metabolic capabilities 

of a model organism under steady-state flux conditions by constraining the net 

production rate of every metabolite in the system to zero [29-32]. This quasi-steady-

state constraint on the metabolic fluxes is described mathematically in Eq. 1:  

N·v = 0  (1) 

In Eq. 1, N is the m x r matrix of the stoichiometric coefficients for the r reactions and 

m metabolites in the model, and v is the r x 1 vector of the steady-state fluxes through 

the r reactions in the model. Bounds are placed on the reaction fluxes depending on 

the reversibility of the reactions: 

-100 mMol/gm CDW hr ≤ vi,reversible ≤ 100 mMol/gm CDW hr  (2) 

0.0 mMol/gm CDW hr ≤ vi,irreversible ≤ 100 mMol/gm CDW hr  (3) 

When simulating a gene knockout, the bounds on the flux through all reactions 

associated exclusively with the gene being knocked out (or associated exclusively 

with a protein complex partially encoded by the gene being knocked out) were reset to 

zero. When simulating media conditions, only nutrients present in the media were 
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allowed to have a net uptake by the cell. All other transportable nutrients were 

allowed only to be excreted by the cell. Details on conditions for all MFA simulations 

performed are provided in Supplementary Table S8. 

Prediction of reaction reversibility based on thermodynamics 

The reversibility and directionality of the reactions in the iBsu1101 model 

were determined by using a combination of thermodynamic analysis and a set of 

heuristic rules based on knowledge of metabolism and biochemistry. In the 

thermodynamic analysis of the model reactions, the standard Gibbs free energy 

change (∆rG’°) was estimated for each reaction in the model by using the group 

contribution method [33-35]. The estimated ∆rG’° values were then used to determine 

the minimum and maximum possible values for the absolute Gibbs free energy 

change of reaction (∆rG’) using Eqns. 4 and 5, respectively: 

( ) ( )
Products Reactants

' '
min Transport min max

1 1
ln ln°

= =

∆ = ∆ + ∆ + + −∑ ∑r r i i r
i i

G G G RT n x RT n x U  (4) 

( ) ( )
Pr Reactants

' '
max Transport max min

1 1
ln ln°

= =

∆ = ∆ + ∆ + + +∑ ∑
oducts

r r i i r
i i

G G G RT n x RT n x U  (5) 

In these equations, xmin is the minimal metabolite activity, assumed to be 0.01 mM; 

xmax is the maximum metabolite activity, assumed to be 20 mM; R is the universal gas 

constant; T is the temperature; ni is the stoichiometric coefficient for species i in the 

reaction; Ur is the uncertainty in the estimated ∆rG’°; and ∆GTransport is the energy 

involved in transport of ions across the cell membrane. Any reaction with a negative 

'
maxrG∆  was assumed to be irreversible in the forward direction, and any reaction with 

a positive '
minrG∆  was assumed to be irreversible in the reverse direction. These 

criteria have been utilized often to identify irreversible reactions [28, 36, 37]. 
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However, '
minrG∆  and '

maxrG∆  alone are insufficient to exhaustively identify 

every irreversible reaction in a model. Many reactions that are known to be 

irreversible have a negative '
minrG∆  and a positive '

maxrG∆ . To identify every 

irreversible reaction in the iBsu1101 model, we developed and applied a set of three 

heuristic rules based on common categories of biochemical reactions that are known 

to be irreversible: carboxylation reactions, phosphorylation reactions, coenzyme A 

and acyl-carrier-protein ligases, ABC transporters, and reactions utilizing ATP 

hydrolysis to drive an otherwise unfavorable action. We applied our heuristic rules to 

identify any irreversible reactions with negative '
minrG∆  and positive '

maxrG∆  values. 

The first reversibility rule is that all ABC transporters are irreversible. As a 

result of the application of this rule, ATP synthase is the only transporter in the 

iBsu1101 model capable of producing ATP directly. The second reversibility rule is 

that any reaction with a mM Gibbs free energy change (∆rG’m) that is less than 2 

kcal/mol and greater than -2 kcal/mol is reversible. The ∆rG’m is calculated by using 

Eq. 6: 

( )
Products and reactants

' '
Transport

1
ln 0.001°

=

∆ = ∆ + ∆ + ∑m
r r i

i
G G G RT n   (6) 

 ∆rG’m is preferred over ∆rG’° when assessing reaction feasibility under physiological 

conditions because the one mM reference state of ∆rG’m better reflects the intracellular 

metabolite concentration levels than does the one molar reference state of ∆rG’°. 

 The final reversibility rule uses a reversibility score, Srev, calculated as 

follows: 

Rev
0

( , , ) ( , , ) λ
=

= + − ∑
Substrates

ATP ADP Pi ATP AMP Ppi i i
i

S min n n n min n n n n   (7) 
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In this equation, nx is the number of molecules of type x involved in the reaction, Pi 

represents phosphate, Ppi represents pyrophosphate, and λi is a binary parameter equal 

to one when i is a low-energy substrate and equal to zero otherwise. Lower-energy 

substrates in this calculation include CO2, HCO3
-, CoA, ACP, phosphate, and 

pyrophosphate. According to the final reversibility rule, if the product of Srev and 

∆rG’m is greater than two and ∆rG’m is less than zero, the reaction is irreversible in the 

forward direction; if the product of Srev and ∆rG’m is greater than two and ∆rG’m is 

greater than zero, the reaction is irreversible in the reverse direction. All remaining 

reactions that fail to meet any of the reversibility rule criteria are considered to be 

reversible. 

Model optimization procedure overview 

A modified version of the GrowMatch procedure developed by Kumar et al. 

[20] was applied to identify changes in the stoichiometry of the model that would 

eliminate erroneous model predictions. The procedure consists of four steps applied 

consecutively (Figure 2): (i) gap filling to identify and fill gaps in the original model 

that cause false negative predictions (predictions of zero growth where growth is 

known to occur), (ii) gap filling reconciliation to combine many gap filling solutions 

to maximize correction of false negative predictions while minimizing model 

modifications, (iii) gap generation to identify extra or underconstrained reactions in 

the gap-filled model that cause false positive predictions (predictions of growth where 

growth is known not to occur), and (iv) gap generation reconciliation to combine the 

gap generation solutions to maximize correction of false positive predictions with a 

minimum of model modifications. While the gap filling and gap generation steps are 

based entirely on the GrowMatch procedure (with some changes to the objective 

function), the reconciliation steps described here are novel. 
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Model optimization step one: gap filling 

The gap filling step of the model optimization process, originally proposed by 

Kumar et al. [38], attempts to correct false negative predictions in the original model 

by either relaxing the reversibility constraints on existing reactions or by adding new 

reactions to the model. For each simulated experimental condition with a false 

negative prediction, the following optimization was performed on a superset of 

reactions consisting of every balanced reaction in the KEGG or in any one of ten 

published genome-scale models [6, 11, 22, 37, 39-44]: 

Objective: 

( ),
1

Minimize λ
=
∑

gapfillingr

gapfill i i
i

z   (8) 

Subject to: 

0• =SuperN v   (9) 

,0 ≤ ≤i max i iv v z  i = 1, …, r (10) 

310  gm/gm CDW hr−>biov   (11) 

The objective of the gap filling procedure (Eq. 8) is to minimize the number of 

reactions that are not in the original model but must be added in order for biomass to 

be produced under the simulated experimental conditions. Because the gap filling is 

run only for conditions with a false negative prediction by the original model, at least 

one reaction will always need to be added.  

In the gap filling formulation, all reactions are treated as reversible, and every 

reversible reaction is decomposed into separate forward and reverse component 
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reactions. This decomposition of reversible reactions allows for the independent 

addition of each direction of a reaction by the gap filling, which is necessary for gaps 

to be filled by the relaxation of the reversibility constraints on existing reactions. As a 

result of this decomposition, the reactions represented in the gap filling formulation 

are the forward and backward components of the reactions in the original 

KEGG/model superset. In the objective of the gap filling formulation, rgapfilling 

represents the total number of component reactions in the superset; zi is a binary use 

variable equal to one if the flux through component reaction i is nonzero; and λgapfill,i 

is a constant representing the cost associated with the addition of component reaction 

i to the model. If component reaction i is already present in the model, λgapfill,i is equal 

to zero. Otherwise, λgapfill,i is calculated by using Eq. 12: 

,

, KEGG, structure, known- , unfavorable,i1 3
10

λ
°

∆

⎛ ⎞∆
= + + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

i est
m

r
gapfill i i i G i

G
P P P P  (12) 

Each of the P variables in Eq. 12 is a binary constant representing a type of penalty 

applied for the addition of various component reactions to the model. These constants 

are equal to one if the penalty applies to a particular reaction and equal to zero 

otherwise. PKEGG,i penalizes the addition of component reactions that are not in the 

KEGG database. Reactions in the KEGG database are favored because they are up to 

date and typically do not involve any lumping of metabolites. Pstructure,i penalizes the 

addition of component reactions that involve metabolites with unknown structures. 

Pknown-∆G,i penalizes the addition of component reactions for which ∆rG°’ cannot be 

estimated. Punfavorable,i penalizes the addition of component reactions operating in an 

unfavorable direction as predicted by our reaction directionality prediction method. 
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Inclusion of these penalty terms in the λgapfill,i objective coefficients significantly 

improves the quality of the solutions produced by the gap filling method. 

 Equation 9 represents the mass balance constraints that enforce the quasi-

steady-state assumption of flux balance analysis (FBA). In this equation, Nsuper is the 

stoichiometric matrix for the decomposed superset of KEGG/model reactions, and v is 

the vector of fluxes through the forward and reverse components of our superset 

reactions.  

Equation 10 enforces the bounds on the component reaction fluxes (vi), and 

the values of the component reaction use variables (zi). This equation ensures that 

each component reaction flux, vi, must be zero unless the use variable associated with 

the component reaction, zi, is equal to one. The vmax,i term in Eq. 10 is the key to the 

simulation of experimental conditions in FBA. If vmax,i corresponds to a reaction 

associated with a knocked-out gene in the simulated experiment, this vmax,i is set to 

zero. If vmax,i corresponds to the uptake of a nutrient not found in the media conditions 

being simulated, this vmax,i is also set to zero. Equation 11 constrains the flux through 

the biomass reaction in the model, vbio, to a nonzero value, which is necessary to 

identify sets of component reactions that must be added to the model in order for 

growth to be predicted under the conditions being simulated.  

Each solution produced by the gap filling optimization defines a list of 

irreversible reactions within the original model that should be made reversible and a 

set of reactions not in the original model that should be added in order to fix a single 

false negative prediction. Recursive MILP [45] was applied to identify the multiple 

gap filling solutions that may exist to correct each false negative prediction. Each 

solution identified by recursive MILP was implemented in a test model and validated 

against the complete set of experimental conditions. All incorrect predictions by a test 
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model associated with each gap filling solution were tabulated into an error matrix for 

use in the next step of the model optimization process: gap filling reconciliation. 

Model optimization step two: gap filling reconciliation 

The gap filling step in the model optimization algorithm produces multiple 

equally optimal solutions to correct each false negative prediction in the unoptimized 

model. While all of these solutions repair at least one false negative prediction, they 

often do so at the cost of introducing new false positive predictions. To identify the 

cross section of gap filling solutions that results in an optimal fit to the available 

experimental data with minimal modifications to the original model, we apply the gap 

filling reconciliation step of the model optimization procedure.  In this step, we 

perform the following integer optimization that maximizes the correction of false 

negative errors, minimizes the introduction of new false positive errors, and 

minimizes the net changes made to the model: 

Objective: 

,
1 1

Minimize 30 λ
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In the objective of the gap filling reconciliation formulation (Eq. 13), nobs and rsol are 

constants representing the total number of experimental observations and the number 

of unique component reactions involved in the gap filling solutions, respectively; 

λgapfill,i and zi carry the same definitions as in the gap filling formulation; and ok is a 

binary variable equal to zero if observation k is expected to be correctly predicted 

given the values of zi and equal to one otherwise.  

The values of the ok variables are controlled by the constraints defined in Eqs. 

14 and 15. Equation 14 is written for any experimental condition with a false negative 

prediction by the original model. This constraint states that at least one gap filling 

solution that corrects this false negative prediction must be implemented in order for 

this prediction error to be corrected in the gap-filled model. Equation 15 is written for 

any experimental condition where the original model correctly predicts that zero 

growth will occur. This constraint states that implementation of any gap filling 

solution that causes a new false positive prediction for this condition will result in an 

incorrect prediction by the gap-filled model. In these constraints, nsol is the total 

number of gap filling solutions; εj,k is a binary constant equal to one if condition k is 

correctly predicted by solution j and equal to zero otherwise; sj is a binary variable 

equal to one if gap filling solution j should be implemented in the gap-filled model 

and equal to zero otherwise. 

 The final set of constraints for this formulation (Eq. 16) enforce, the condition 

that a gap filling solution (represented by the use variable sj) is not implemented in the 

gap-filled model unless all of the reaction additions and modifications (represented by 

the use variables zi) that constitute the solution have been implemented in the model. 

In these constraints, γi,j is a constant equal to one if reaction i is involved in solution j 

and equal to zero otherwise. 
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 Once again, recursive MILP was applied to identify multiple equivalently 

optimal solutions to the gap filling reconciliation problem, and each solution was 

validated against the complete set of experimental data to ensure that the combination 

of multiple gap filling solutions did not give rise to additional false positive 

predictions. The solutions that resulted in the most accurate prediction of growth in all 

experimental conditions were manually curated to identify the most physiologically 

relevant solution. This solution was then implemented in the original model to 

produce the gap-filled model. 

Model optimization step three: gap generation 

The gap-filled model produced by the gap filling reconciliation step not only 

will retain all of the false positive predictions generated by the original model but also 

will generate a small number of new false positive predictions that arise as a result of 

additions and modifications made during the gap filling process. In the gap generation 

step of the model optimization procedure we attempt to correct these false positive 

predictions either by removing irreversible reactions or by converting reversible 

reactions into irreversible reactions. For each simulated experimental condition with a 

false positive prediction by the gap-filled model, the following optimization was 

performed: 

Objective: 

( ),
1

Maximize λ
=
∑

gapfilledr

gapgen i i
i
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no growth 0• =gapfilledN v   (18) 
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5
, 10 /   −>bio growthv gm gm CDW hr   (27) 

The objective of the gap generation procedure (Eq. 17) is to minimize the number of 

component reactions that must be removed from the model in order to eliminate 

biomass production under conditions where the organism is known not to produce 

biomass. As in the gap filling optimization, all reversible reactions are decomposed 

into separate forward and backward component reactions. This process enables the 

independent removal of each direction of operation of the reactions in the model. As a 

result, rgapgen in Eq. 17 is equal to the number of irreversible reactions plus twice the 

number of reversible reactions in the gap-filled model; zi is a binary use variable equal 

to one if the flux through component reaction i is greater than zero and equal to zero 
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otherwise; λgapfill,i is a constant representing the cost of removal of component reaction 

i from the model. λgapfill,i is calculated using Eq. 28: 

, ,1λ = +gapgen i irreversible iP  (28) 

The Pirreversible,i term in Eq. 28 is a binary constant equal to one if reaction i is 

irreversible and associated with at least one gene in the model. This term exists to 

penalize the complete removal of reactions from the model (as is done when 

removing one component of an irreversible reaction) over the adjustment of the 

reversibility of a reaction in the model (as is done when removing one component of a 

reversible reaction). 

 Equations 18 and 19 represent the mass balance constraints and flux bounds 

that simulate the experimental conditions with false positive predictions. Ngapfilled is 

the stoichiometrix matrix for the gap-filled model with the decomposed reversible 

reactions; vno-growth is the vector of fluxes through the reactions under the false positive 

experimental conditions; and vmax,no-growth,i is the upperbound on the flux through 

reaction i set to simulate the false positive experimental conditions. 

Equations 20 and 21 define the dual constraints associated with each flux in 

the primal FBA formulation. In these constraints, σi,j is the stroichiometric coefficient 

for metabolite j in reaction i; mj is the dual variable associated with the mass balance 

constraint for metabolite j in the primal FBA formulation; µi is the dual variable 

associated with the upperbound constraint on the flux through reaction i in the primal 

FBA formulation; and K is a large constant selected such that the Eqns. 20 and 21 

constraints are always feasible when zi is equal to zero. Equation 22 sets the dual 

slack variable associated with reaction i, µi, to zero when the use variable associated 

with component reaction i, zi, is equal to zero. Equation 22 and the term involving K 
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in Eqns. 20 and 21 exist to eliminate all dual constraints and variables associated with 

component reaction i when component reaction i is flagged to be removed by the gap 

generation optimization. 

Equation 23 is the constraint that sets the original primal FBA objective 

(maximization of biomass production) equal to the dual FBA objective (minimization 

of flux slack). This constraint ensures that every set of vno-growth fluxes that satisfies the 

constraints in Eqns. 20-23 represents an optimal solution to the original FBA problem 

which maximizes biomass production. Therefore, if the biomass flux is set to zero, as 

is done in Eq. 24, this is equivalent to stating that the binary use variables zi must be 

set in such a way that the maximum production of biomass when simulating the false 

positive experimental conditions must be zero. 

With no additional constraints, the gap generation optimization would produce 

solutions recommending the knockout of component reactions that cause the loss of 

biomass production under every experimental condition instead of just the false 

positive conditions. Constraints are required to ensure that only solutions that 

eliminate biomass production under the false positive conditions while preserving 

biomass production in all other conditions will be feasible. These constraints are 

defined by Eqns. 25, 26, and 27, which represent the FBA constraints simulating an 

experimental condition where organism being modelled is known to grow. When the 

false positive condition being simulated by the vmax,no-growth,i values is the knockout of 

an essential gene or interval, the  vmax,growth,i values in Eq. 26 simulate the same media 

conditions with no reactions knocked-out. When the false positive condition being 

simulated is an unviable media, the vmax,growth,i values simulate a viable media. 

Because the binary zi variables are shared by the “no growth” and “growth” FBA 

constraints, zi will be set to zero only for those reactions that are not essential or 
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coessential under the “growth” conditions but are essential or coessential under the 

“no growth conditions.” To further reduce the probability that a gap generation 

solution will cause new false negative predictions, we identified the component 

reactions in the gap-filled model that were essential for the correct prediction of 

growth in at least three of the experimental conditions prior to running the gap 

generation optimization. The zi variables associated with these essential component 

reactions were fixed at one to prevent their removal in the gap generation 

optimization.  

As done in previous steps, recursive MILP was used to identify up to ten 

equally optimal solutions that correct each false positive prediction error in the gap-

filled model. Each solution was implemented and validated against the complete set 

of experimental data, and the accuracy of each solution was tabulated into a matrix for 

use in the final step of the model optimization procedure: gap generation 

reconciliation. 

Model optimization step four: gap generation reconciliation 

Like the gap filling step, the gap generation step of the model optimization 

process produces multiple equally optimal solutions to correct each false positive 

prediction in the gap-filled model, and many of these solutions introduce new false 

negative prediction errors. To identify the cross section of gap generation solutions 

that results in the maximum correction of false positive predictions with the minimum 

addition of false negative predictions, we perform one final optimization step: gap 

generation reconciliation. The optimization problem solved in the gap generation 

reconciliation step is identical to the gap filling reconciliation optimization except that 
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the constraints defined by Eqns. 14 and 15 are replaced by the constraints defined by 

Eqns. 29 and 30:  

( )( ),
1

1 1ε
=

+ − ≥∑
soln

k j k j
j

o s     k=1, …, nobs | vbio,in vivo,k = 0, vbio,in silico,k > 0  (29) 

( ),
1

0ε
=

− ≥∑
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sol k j k j
j

n o s     k=1, …, nobs | vbio,in vivo,k > 0, vbio,in silico,k > 0   (30) 

Equation 29 is written for any experimental condition with a false positive 

prediction by the gap-filled model. This constraint states that at least one gap 

generation solution that corrects the false positive prediction must be implemented for 

the condition to be correctly predicted by the optimized model. Equation 30 is written 

for any experimental condition where the original model correctly predicts that 

growth will occur. This constraint states that implementation of any gap generation 

solution that causes a new false positive prediction will result in a new incorrect 

prediction by the optimized model. All of the variables and constants used in Eqns. 29 

and 30 have the same meaning as in Eqns. 14 and 15. 

Although the objective, remaining constraints, and remaining variables in the 

gap generation reconciliation are mathematically identical to the gap filling 

reconciliation, some variables take on a different physiological meaning. Because gap 

generation solutions involve the removal (not the addition) of reactions from the gap-

filled model, the reaction use variable zi is now equal to one if a reaction is to be 

removed from the gap-filled model and equal to zero otherwise.  

The gap generation reconciliation was solved repeatedly by using recursive 

MILP to identify multiple solutions to the gap generation reconciliation optimization, 

and each solution was implemented in a test model and validated against the complete 
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set of experimental data. The solutions associated with the most accurate test models 

were manually examined to identify the most physiologically relevant solution. The 

selected solution was then implemented in the gap-filled model to produce the 

optimized iBsu1101 model. 
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Figure legends  

Figure 1. Distribution of reactions conforming to reversibility rules 

The distribution of reactions in the iBsu1101 model conforming to every possible 

state in the proposed set of rules for assigning reaction directionality and reversibility 

is shown (Figure 1A). This distribution indicates that most of the irreversible 

reactions in the model were determined to be irreversible because the ∆rG’
max value 

calculated for the reaction was negative. The distribution of reactions in the iBsu1101 

model involving the compounds used in the reversibility score calculation is also 

shown (Figure 1B). These compounds are prevalent in the reactions of the iBsu1101 

model, with 64% of the reactions in the model involving at least one of these 

compounds.  

Figure 2. Model optimization procedure results 

The results are shown from the application of the model optimization procedure to fit 

the iBsu1101 model to the 1500 available experimental data-points.  



 - 40 - 

Figure 3. Classification of model reactions by function and behaviour  

Reactions in the optimized iBsu1101 model are categorized into ten regions of the B. 

subtilis metabolism (Figure 3A). Regions of metabolism involving a diverse set of 

substrates typically involve the greatest number of reactions. The iBsu1101 reactions 

were also categorized according to their essentiality during minimal growth on LB 

media (Figure 3B). 

Figure 4. Comparison of iBsu1101 model to the Oh et al. model 

A detailed comparison of the iBsu1101 model and the Oh et al. model was performed 

to determine overlap of reactions, genes, annotations, and gene complexes between 

the two models (Figure 4A). In the annotation comparison, only annotations involving 

the 818 overlapping reactions in the two models were compared; and each annotation 

consisted of a single reaction paired with a single gene. If two genes were mapped to 

a single reaction, this was treated as two separate annotations in this comparison. 

Tables  

Additional files  

Additional file 1 – iBsu1101.xls  

This excel file contains tables with all supplementary data associated with the 

iBsu1101 model including Tables S1-S8. Tables S1 and S2 contain all compound and 

reaction data associated with the model, respectively; Table S3 lists all of the open 

problem reactions in the model; Table S4 lists all of the essential genes that have 

nonessential homologs in the B. subtilis genome; Table S5 lists all of the changes 

made to the model during the model optimization process; Table S6 lists the reactions 

in the Oh et al. model that are not in the iBsu1101 model; Table S7 shows simulation 
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results for all 1500 experimental conditions; Table S8 provides the details on the 

media formulations used for each FBA simulation; and Tables S9, S10, and S11 show 

all data on the genes, functional roles, and subsystems in the B. subtilis SEED 

annotation. 

Additional file 2 – iBsu1101.sbml  

This is an SBML version of the model, which may be used with the published 

COBRA toolbox [16] to run flux balance analysis on the model.  

Additional file 3 – Supplementary_Material.pdf  

This file describes all data contained in every table of the iBsu1101.xls spreadsheet. 

Additional file 4 – Molfiles.zip  

This zip archive contains data on the structure of every molecule in the model in 

molfile format. These molfiles reflect the structure of the predominant ionic form of 

the compounds at neutral pH as predicted using the MarvinBeans software. These 

structures were used with the group contribution method [33-35] to estimate the ∆fG’° 

and ∆rG’° for the model compounds and reactions. 
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